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Abstract. The Numerical calculations for tadpole-improved U(1) lattice gauge theory in three-dimensions
on anisotropic lattices have been performed using standard path integral Monte Carlo techniques. Using
average plaquette tadpole renormalization scheme, simulations were done with temporal lattice spacings
much smaller than the spatial ones and results were obtained for the string tension, the renormalized
anisotropy and scalar glueball masses. We find, by comparing the ‘regular’ and ‘sideways’ potentials,
that tadpole improvement results in very little renormalization of the bare anisotropy and reduces the
discretization errors in the static quark potential and in the glueball masses.

1 Introduction

Compact U(1) gauge theory in (2+1) dimensions is one
of the simplest models with dynamical gauge degrees of
freedom and possesses some important similarities with
QCD [1]. The model has two essential features in common
with QCD, confinement [2,3] and chiral symmetry break-
ing [4]. The theory is interesting in its own right, for it
has analytically been shown to confine electrically charged
particles even in the weak-coupling regime (at zero tem-
perature) [2, 3, 5–8]. The confinement is understood as a
result of the dynamics of the monopoles which emerge due
to the compactness of the gauge field. The string tension
as a function of the coupling behaves in a similar fashion
to that of the 4-dimensional SU(N) lattice gauge theory.
This model also allows us to work with large lattices with
reasonable statistics. Other common features of compact
U(1)(2+1) and QCD are the existence of a mass gap and of a
confinement-deconfinement phase transition at some non-
zero temperature. Thus, being reasonably simple and the-
oretically well understood in the weak-coupling limit, the
U(1) model provides a good testing ground for the devel-
opment of new methods and new algorithmic approaches.
In a recent paper [9] we have obtained the first clear picture
of the static quark potential, showing very clear evidence
of the linear confining behaviour at large distances. The
evidence of the the scaling behaviour of the string tension
and the mass gap has also been observed in this model.

In the present paper we want to extend the analysis
of [9] in various respects. Since the measured ratio of spa-
tial to temporal lattice spacings is not the same as the
input parameter in the action, it becomes important to
determine the true or renormalized anisotropy ξphys. as a
function of the bare anisotropy ξ0. An important advantage
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of using anisotropic lattices has been the need to measure
the renormalization of anisotropy in the simulation. The
existing theoretical [10,11] and numerical studies [12] with
Wilson action for SU(3) lattice gauge theory have shown
that at finite coupling g, the renormalized anisotropy ξphys.

differs appreciably form bare anisotropy ξ0. However, it
has recently been shown that the use of improved actions,
supplemented by tadpole improvement, besides providing
a better discretization scheme for QCD, offer the advan-
tage of a significant reduction of renormalization of ξ0 to
a few percent [13, 14]. The anisotropy parameter η (ratio
of the renormalized and bare anisotropy) and anisotropic
coefficients have been calculated to one-loop order for im-
proved actions in various recent studies [11,15–18]. These
calculations have provided very reliable results and the ob-
served behaviour is confirmed non-perturbatively by large
scale simulations on fine lattices [14, 19, 20]. We investi-
gate the influence of tadpole improvement on isotropic and
anisotropic lattices for the U(1) model in (2+1) dimensions
in reducing the renormalization of the bare anisotropy at
weak and strong couplings. We also apply tadpole im-
proved U(1) lattice gauge theory to calculations of the
static quark potential, the string tension and the scalar
glueball masses and compare the results with simulations
of the Wilson action.

The rest of this paper is organized as follows. After out-
lining the tadpole improved U(1) gauge model in (2+1)
dimensions in Sect. 2, we describe the method for deter-
mination of the renormalized anisotropy in Sect. 3. We
present results from our simulations on anisotropic lat-
tices using both standard and tadpole improved Wilson
gauge action in Sect. 4. We compare bare and renormal-
ized anisotropies, static quark potential and scalar glueball
masses from these actions. We conclude in Sect. 5 with a
summary and outlook on future work.
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2 Compact U(1) model in (2+1) dimensions

The tadpole-improved U(1) gauge action on an anisotropic
lattice can be written in the following form [12]:

S = β


 ∑

r,i>j

ξ0

u4
s

(1 − Pij(r)) +
∑
r,i

1
ξ0u2

su
2
t

(1 − Pit(r))



(1)

where Pµν is the plaquette operator, ξ0 = ∆τ = at/as is
the bare anisotropy at the classical level and us and ut are
the mean fields for the tadpole improvement. The notation
used in (1) differ slightly from that used in [11,17], where
the spatial and temporal mean-field improvement factors,
us and ut were absorbed into definition of β and ξ0. This,
however, follows the notation introduced in [14].

On the anisotropic lattice, the mean fields are deter-
mined using the measured values of the average plaque-
ttes [21]. We first compute us from spatial plaquettes,
u4

s = 〈Pij〉, and then we compute ut from temporal pla-
quettes, u2

t u
2
s = 〈Pit〉. Another way to determine the mean

fields is to use the mean links in Landau gauge [22]

ut = 〈ReTrUt〉, us = 〈ReTrUi〉 (2)

where the lattice version of the gauge condition is obtained
by maximizing the quantity,

∑
r,µ

1
uµa2

µ

TrUµ(r) (3)

Since the temporal lattice spacing in our simulations is
very small, we adopt the following convention [13, 14, 21]
for the mean fields in tadpole improvement

ut ≡ 1, us = 〈Pij〉1/4. (4)

This prescription eliminates the need for gauge fixing and
the results yield values for us which differ from those using
Landau gauge by only a few percent.

3 Renormalization of anisotropy

Following the procedure of Klassen [12] and Shakespeare
and Trottier [19], we measure the static quark potential
extracted from Wilson loops in the spatial and temporal
directions. Accordingly on an anisotropic lattice there are
two potentials, Vxt(R) and Vxy(R). The two potentials dif-
fer by a factor of ξphys. and by an additive constant, since
the self-energy corrections to the static potential are differ-
ent if the quark and anti-quark propagate along the tempo-
ral or a spatial direction. Thus ξphys. can be determined by
comparing the static quark potential computed from the
logarithmic ratio of time-like Wilson loops R(x, τ), where

R(x, τ) ≡ Wxt(x, τ + 1)
Wxt(x, τ)

, (5)

with the potential computed from that of the space-like
Wilson loops R(x, y), where

R(x, y) ≡ Wxy(x, y + 1)
Wxt(x, y)

. (6)

Asymptotically, for large τ and y, the ratios R(x, τ) and
R(x, y) approach

R(x, τ) = Zxτe−τVxt + (excited state contr.) (7)

R(x, y) = Zxye−yVxy + (excited state contr.). (8)

To suppress the excited state contributions, a simple APE
smearing technique [23–25] was used. In this technique
an iterative smearing procedure is used to construct Wil-
son loop (and glueball) operators with a very high degree
of overlap with the lowest-lying state. In our single-link
smoothing procedure, we replace every space-like link vari-
able by

Ui → P

[
αUi +

(1 − α)
2

∑
s

Us

]
(9)

where the sum over ‘s’ refers to the “staples”, or 3-link
paths bracketing the given link on either side in the spatial
plane, and P denotes a projection onto the group U(1),
achieved by renormalizing the magnitude to unity. We used
a smearing parameter α = 0.7 and up to ten iterations of
the smearing process. To reduce the statistical errors, the
time-like Wilson loops were constructed from “thermally
averaged” time-like links [24,25].

The links making up the space-like and time-like Wil-
son loops are smeared by the same amount so that the ra-
tios R(x, τ) and R(x, y) have the same excited-state contri-
bution. Similarly, finite-volume corrections to the R(x, τ)
and R(x, y) are the same if the temporal and spatial ex-
tents are equal in physical units, i.e. Ns = ξphys.Nt in
lattice units. These statements are expected to hold only
for large x, y and τ ; otherwise there can be large O(a2

s, a
2
t )

lattice errors.
The physical anisotropy is determined from the ratio of

the potentials Vxt(R) and Vxy(R) estimated from Rxt and
Rxy respectively. The unphysical constant in the potentials
is removed by subtraction of the simulation results at two
different radii

ξphys. =
Vxt(R2) − Vxt(R1)
Vxy(R2) − Vxy(R1)

. (10)

The measured renormalization of the anisotropy, η is then
determined from

η ≡ ξphys.

ξ0
. (11)

4 Simulation and results

Simulations were performed on four lattices of N2
s × Nt

sites, with Ns = 16 and Nt ranging from 32 to 48 with
mean-link improvement, and four lattices with the Wil-
son action. Configurations were generated by using the
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Table 1. Simulation parameters for the lattices analyzed for
renormalization of the anisotropy. The bare anisotropies ξ0 and
the means fields ut and us for tadpole improvement are shown

Action ξ0 = ∆τ β ut us Volume
Tadpole 0.50 1.306 1. 0.924 162 × 32
Improved 1.443 1. 0.931

1.592 1. 0.937
1.892 1. 0.946

0.40 1.302 1. 0.921 162 × 40
1.436 1. 0.927
1.584 1. 0.932
1.88 1. 0.940

0.33 1.2931 1. 0.915 162 × 48
1.426 1. 0.920
1.567 1. 0.922
1.858 1. 0.929

Wilson 0.50 1.4142 162 × 32
0.40 162 × 40
0.33 162 × 48

Metropolis algorithm. The details of the algorithm are dis-
cussed elsewhere [9]. 50000 sweeps were performed for ther-
malization of the configurations and self-consistent deter-
mination of the tadpole factors. Configurations are stored
every 250 sweeps thereafter. Ensembles of about 1000 con-
figurations were used to measure the static quark poten-
tial, while 1,400 configurations, at coupling values from
β = 1.0 to 2.5, were generated for the glueball mass. We
fixed ξ0 = 16/Nt in the first pass, so that the lattice size
remains fixed at 16as in all directions. The simulation pa-
rameters of the lattices analyzed here are given in Table 1.

After measuring the Wilson loops at fixed values of
β, we compute the ratios Rxt and Rxy. We find that the
individual ratios reach their plateaus for τ ≥ 3 and y ≥ 3
for fixed x as shown in Figs. 1 and 2. These ratios are
are expected to be independent of τ and y for τ , y ≥ 3
respectively. The estimates of the potentials Vxt(R) and
Vxy(R) can now be found from these ratios.

Figure 3 shows a graph of the static quark potentials,
computed from spatial and temporal Wilson loops, as a
function of radius R at β = 1.306 and ∆τ = 0.5. The
potential in the lattice units obtained from the ratio of
the time-like Wilson loops has been rescaled by the in-
put anisotropy. To extract the string tension, the time-like
potential is well fitted by a form

Vxt(R) = a + b lnR + σR, (12)

including a logarithmic Coulomb term as expected for clas-
sical QED in (2+1) dimensions which dominates the be-
haviour at small distances, and a linear term as predicted
by Polyakov [3] and Göpfert and Mack [8] dominating the
behaviour at large distances and showing a clear evidence
of the linear confining behaviour at large distances.

We measured each anisotropy twice, using two different
radii R1 for subtraction, with fixed R2. Setting R2 = 4,
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Fig. 1. Logarithmic ratio of the time-like Wilson loops as a
function of τ for fixed x at β = 1.309 and ∆τ = 0.5. The
solid triangles correspond to x = 4 and open triangles show
x = 2 values
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Fig. 2. Logarithmic ratio of the spatial Wilson loops as a
function of y for fixed x at β = 1.309 and ∆τ = 0.5. The
solid triangles correspond to x = 4 and open triangles show
x = 2 values

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

1 1.5 2 2.5 3 3.5 4 4.5 5

R

V(R)

Fig. 3. Static quark potentials computed from Rxt (solid tri-
angles) and Rxy (open squares) as a function of separation R
at β = 1.306 and ∆τ = 0.5 using mean field improved gauge
action. The potential obtained from Rxt has been rescaled
by the input anisotropy. The solid line is a fit to the form
V (R) = a + b ln(R) + σR to the temporal Wilson loops
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Table 2. Measured anisotropy ξphys. compared to the bare
anisotropy ξ0 for two actions

Action ξ0 β ξphys. η = ξphys./ξ0

R1 = 2 R1 =
√

2 R1 = 2 R1 =
√

2

Tadpole 0.50 1.306 0.500(1) 0.500(2) 1.00(1) 1.00(4)

Improved 1.443 0.501(2) 0.503(2) 1.00(4) 1.00(4)

1.592 0.50(2) 0.50(3) 1.00(4) 1.00(6)

1.892 0.50(5) 0.50(4) 1.0(1) 1.00(8)

0.40 1.302 0.402(2) 0.401(2) 1.00(4) 1.00(5)

1.436 0.402(1) 0.403(8) 1.00(2) 1.00(1)

1.584 0.40(3) 0.40(2) 1.00(6) 1.00(4)

1.88 0.40(1) 0.40(1) 1.00(7) 1.00(2)

0.33 1.293 0.335(3) 0.34(1) 1.00(8) 1.03(3)

1.426 0.33(2) 0.33(1) 1.00(6) 1.00(3)

1.567 0.33(2) 0.33(1) 1.00(6) 1.00(3)

1.858 0.33(3) 0.33(1) 1.00(6) 1.00(3)

Wilson 0.50 1.414 0.482(4) 0.471(3) 0.964(8) 0.942(6)

0.40 1.414 0.336(4) 0.338(3) 0.84(1) 0.845(7)

0.33 1.414 0.279(5) 0.281(2) 0.83(1) 0.843(6)
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Fig. 4. Static quark potentials computed from Rxt (solid
triangles) and Rxy (open squares) at β = 1.306 and ∆τ = 0.5
for standard Wilson action

we computed the anisotropy with R1 = 2 and
√

2. The
two determinations of anisotropy, shown in Table 2, are in
excellent agreement. The numerical values of the renormal-
ization of the anisotropy parameter η appears to be equal
to unity even at large β. It is seen that with mean-field
improvement the input anisotropy is renormalized by few
percent over the range of lattices analyzed here, whereas
the measured value of anisotropy is about 15 − 20% lower
than the bare anisotropy with the standard Wilson action.
This can be seen from Fig. 4 where the renormalization of
the anisotropy is plainly visible as a difference in slope of
the potentials computed from Rxt and Rxy.

Table 3. Monte Carlo estimates for the mean plaquette 〈P 〉,
the effective lattice spacing, the symmetric and antisymmetric
glueball masses M0++ , M0−− , for tadpole improved Wilson
action at ∆τ = 1.0

Action β 〈P 〉 aeff M0++/
√

K M0−−/
√

K RM

Tadpole 0.917 0.678 0.864 4.0(1) 3.9(1) 1.03(3)
improved 1.243 0.719 0.446 3.83(9) 3.2(1) 1.19(3)

1.327 0.776 0.373 3.5(2) 2.9(1) 1.23(4)
1.460 0.797 0.281 3.7(1) 2.34(7) 1.58(4)
1.613 0.816 0.202 3.6(1) 2.05(2) 1.80(5)
1.816 0.836 0.129 2.05(4) 0.98(3) 2.00(5)
1.917 0.844 0.103 2.0(1) 0.99(5) 2.00(6)
2.168 0.861 0.058 2.19(6) 1.05(2) 2.08(7)
2.417 0.874
2.669 0.885
2.917 0.895

Wilson 1.0 0.475 0.733 3.27(3) 3.1(1) 1.03(6)
1.35 0.629 0.356 3.6(1) 2.81(9) 1.30(5)
1.41 0.656 0.310 3.8(1) 2.95(8) 1.31(7)
1.55 0.704 0.231 4.0(1) 2.81(6) 1.42(7)
1.70 0.748 0.166 4.03(8) 2.51(2) 1.60(8)
1.90 0.790 0.107 3.9(1) 1.88(3) 2.0(1)
2.0 0.806 0.085 3.53(4) 1.96(4) 1.80(9)
2.5 0.854 0.027 3.1(2) 1.50(8) 2.0(1)

Glueball correlation functions C(τ) were also calcu-
lated

C(τ) =
∑
τ0

〈0 | Φ̄i(τ + τ0)Φ̄i(τ0) | 0〉 (13)

where Φ̄i(τ) is the optimized glueball operator found by a
variational technique, following Morningstar and Peardon
[14] and Teper [26], from a linear combination of the basic
operators φi,

Φ(τ) =
∑
α

viαφiα(τ) (14)

where the index α runs over the rectangular Wilson loops
with dimensions lx = [n − 1, n + 1], ly = [n − 1, n + 1] and
smearing ns = [m − 1, m + 1], making 27 operators in all.

The optimized correlation function was fitted with the
simple form

Ci = c0 + c1 cosh mi(T/2 − τ) (15)

to determine the glueball mass estimates.
The results for the symmetric and the anti-symmetric

glueball masses over the square root of the string tension
are shown in Table 3, along with the mean plaquette values
at different β at ∆τ = 1.0. Figure 5 shows the behaviour
of the logarithm of the antisymmetric mass gap over the
square root of the string tension as a function of β. It can
be seen that that the ratio scales exponentially to zero in
the weak-coupling limit as should be in three-dimensional
confining theories. The solid line is a fit to the data over
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Fig. 6. Mass ratio MR against the effective lattice spacing
aeff at ∆τ = 1.0. The solid triangles show the estimates for
mean field improved gauge action and open circles show the
estimates of standard Wilson action

the range 0.916 ≤ β ≤ 2.12. The slope of the data matches
the predicted form [8], however, the intercept of the scaling
curve is large by a factor of 2 (our previous estimates of
constant coefficient for standard Wilson action are large
by a factor of 5.2 [9]). It would be interesting to test the
sensitivity of the slope and intercept of the scaling curve
by including the radiative corrections.

A plot of mass ratio against the effective lattice spacing
aeff [9] is shown in Fig. 6. At weak coupling, the theory
is expected to approach a theory of free bosons [8] so that
symmetric state will be composed of two 0−− bosons and
the mass ration should approach two. The mass ratio of
the lowest glueball states scale against the effective lat-
tice spacing towards a value close to 2.0, as expected for a
theory of free scalar bosons. We note that mass ratio ex-
hibits scaling behaviour, even with the Wilson action [9],
however, in contrast with the Wilson action, a significant
reduction in the errors with tadpole improved action is
apparent in the mass gap and the mass ratio.

5 Summary and outlook

Mean field improved U(1) lattice gauge theory in (2+1) di-
mensions was applied to calculations of the static quark po-
tential, the renormalized lattice anisotropy and the scalar
glueball masses. We analyzed the mean-link improved ac-
tion on isotropic and anisotropic lattices and comparisons
were made with the simulations of the Wilson action.
By comparing the static quark potentials computed from
space-like and time-like Wilson loops, we determined the
physical anisotropy of the tadpole improved Wilson ac-
tion. We found that with mean-link improved Wilson ac-
tion, the bare anisotropy is renormalized by less than a
few percent, in contrast with the standard Wilson action,
where the measured value of anisotropy is found to be
about 15− 20% lower than bare anisotropy on the lattices
analyzed here. We found that tadpole improvement sig-
nificantly reduces discretization errors in the static quark
potential and the glueball masses. The mass ratio of the
two lowest glueball states scales against the effective lat-
tice spacing towards a value close to 2.0, as expected for
a theory of free scalar bosons.

We intend to extend PIMC techniques to Symanzik
improved U(1) lattice gauge theory. The intention is to
study the effects of improvement on the scaling slope,
the constant coefficients and scaling behaviour observed
in the weak-coupling regime of the theory. We also plan
the study the one-loop correction to the anisotropy factor
for Symanzik improved U(1) gauge action in three dimen-
sions. We shall report on this work in the near future.
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